Nanobiotechnology represents advanced scanning probe microscopic techniques, nano-lithographic machining and various types of artificial nanostructures applied for either visualization or modification of biological objects including tissues, cells, cellular structures and biomolecules. The unique opportunity to touch a single individual molecule of a protein or nucleic acid with the scanning tip provides high-resolution sub-nanometer and pseudo-3-dimensional images providing details of such bioobjects in their native state. These approaches are currently revolutionizing many fields of biology, biophysics and biochemistry and provide innovative results and methodologies for applications in health care – nanobiosensing systems, nanoparticles for labelling and smart distribution of drugs (nanomedicine). Within this work package, the following research fields will be addressed:
The laboratory performs atomic force microscopy (AFM) scans in both dry state and in liquids in contact and non-contact modes. Modified tips allow characterization of surface hydrophobicity, and specific target molecules and cellular surfaces (e.g. tips modified with antibodies) are scanned (spectroscopic techniques) while conductive tips with applied potential will be used for bioelectrochemical studies. Repeated scans will allow the movement and morphologic changes of cells to be studied (VideoAFM). Supplementary information about cells and cellular elements will be provided by scanning near optical field microscopy (SNOM, overcoming the diffraction limit); and scanning tunneling microscopy (STM) will be chosen for atomic resolution.
Molecule of immunoglobulin G imaged on the mica surface using the cantilever with a diamond-like carbon tip, semicontact mode, Ntegra Vita atomic force microscope.
The binding of two individual complementary molecules (antibody-antigen, ligand-receptor, and hybridization of oligonucleotides) will be studied using one partner bound to the solid support and the other linked to the scanning tip. The force data measured at the nanolevel will be correlated with the results obtained at the macrolevel using surface plasmon resonance techniques providing information about kinetics of affinity interactions in real time.
In the AFM-lithography mode, the tip of the cantilever in contact with the scanned object can be used to manipulate cells on the surface. Nano(bio)sensing arrays and other functional nanoobjects will be constructed.
Nanobiosensors will employ the cantilever as nanomechanical transducer bending due to the affinity interaction on one of its sides. Nanoarrays – biochips consisting of sets of specific recognition proteins (monoclonal or recombinant antibodies, engineered receptors and enzymes, artificial peptide folds designed by molecular modelling) will be incubated with clinical samples and then the binding pattern will be read with the help of AFM (SNOM, STM), either directly or after suitable amplification (magnetic nanoparticles, quantum dots). For the validation, “larger” micrometer-sized array elements will be produced and evaluated using multichannel SPR, fluorescence scanning and scanning electrochemical microscopy (SECM).
seznam / vizitky
Jméno a pozice |
Telefon |
|
---|---|---|
doc. RNDr. Petr Skládal, CSc. docent, vedoucí pracoviště |
+420 54949 7659, +420 54949 7010 | |
Mgr. Karel Lacina, Ph.D. senior researcher |
+420 54949 7611 | |
Mgr. Jan Přibyl, Ph.D. senior researcher |
+420 54949 5606 | |
Mgr. Veronika Horáčková, Ph.D. odborná pracovnice ve výzkumu |
+420 54949 7676 | |
Mgr. Matěj Pastucha odborný pracovník - PhD student |
+420 54949 8517 | |
Mgr. Zdeněk Farka, Ph.D. senior researcher |
+420 54949 7674 | |
Mgr. Ondřej Kubesa PhD student |
||
Mgr. Zuzana Svozilová PhD student |
||
Mgr. Veronika Čunderlová odborná pracovnice |
The infrastructure currently available includes Ntegra Vita AFM, Ntegra Solaris SNOM, Biacore 2000 SPR system, fluorescence microscope, cell cultivation facility, electrochemical (10), piezoelectric (5) and fiber optic (2) detectors, light sources (4), DAD spectrophotometer, Multiskan RC and Synergy 2 plate readers, autoinjectors (2), FIALab 3000, and data acquisition systems (NI). The group members have programming experience in Delphi, C++, Java and LabView.
29. ledna 2018 9:46
LECTURE: Dr. Ondrej Hovorka: Models of magnetic nanoparticles for biomedical applications MONDAY, 5. 2. 2018 Seminar room C2.11, from …
25. ledna 2018 18:21
WHEN: 30. 01. 2018 WHERE: CEITEC BUT, Purkynova 123, large meeting room SPEAKER: Dr Andriy Marko TALK: Advances in PELDOR…