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Distinct patterns of novel gene mutations in poor-prognostic
stereotyped subsets of chronic lymphocytic leukemia: the case of
SF3B1 and subset #2
JC Strefford1,16, L-A Sutton2,16, P Baliakas2,3,16, A Agathangelidis4,5, J Malčı́ková6, K Plevova6, L Scarfó4,5, Z Davis7, E Stalika3, D Cortese2,
N Cahill2, LB Pedersen8, PF di Celle9, T Tzenou10, C Geisler8, P Panagiotidis10, AW Langerak11, N Chiorazzi12, S Pospisilova6, D Oscier7,
F Davi13, C Belessi14, L Mansouri2, P Ghia4,5,17, K Stamatopoulos3,15,17 and R Rosenquist2,17

Recent studies have revealed recurrent mutations of the NOTCH1, SF3B1 and BIRC3 genes in chronic lymphocytic leukemia (CLL),
especially among aggressive, chemorefractory cases. Nevertheless, it is currently unknown whether their presence may differ in
subsets of patients carrying stereotyped B-cell receptors and also exhibiting distinct prognoses. Here, we analyzed the mutation
status of NOTCH1, SF3B1 and BIRC3 in three subsets with particularly poor prognosis, that is, subset #1, #2 and #8, aiming to explore
links between genetic aberrations and immune signaling. A remarkably higher frequency of SF3B1 mutations was revealed in subset
#2 (44%) versus subset #1 and #8 (4.6% and 0%, respectively; Po0.001). In contrast, the frequency of NOTCH1 mutations in subset
#2 was only 8%, lower than the frequency observed in either subset #1 or #8 (19% and 14%, respectively; P¼ 0.04 for subset #1
versus #2). No associations were found for BIRC3 mutations that overall were rare. The apparent non-random association of certain
mutations with stereotyped CLL subsets alludes to subset-biased acquisition of genomic aberrations, perhaps consistent with
particular antigen/antibody interactions. These novel findings assist in unraveling specific mechanisms underlying clinical
aggressiveness in poor-prognostic stereotyped subsets, with far-reaching implications for understanding their clonal evolution and
implementing biologically oriented therapy.
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INTRODUCTION
Different lines of research have established a role for (auto)anti-
genic stimulation in the ontogeny and evolution of chronic
lymphocytic leukemia (CLL). In particular, CLL exhibits a highly
skewed immunoglobulin (IG) gene repertoire,1 while patient
survival is associated with the somatic hypermutation status
of the clonotypic IG heavy variable (IGHV) genes.2,3 A remarkable
phenomenon in CLL is that subsets of cases carry quasi-identical
or ‘stereotyped’ B-cell receptors (BcR), in up to 30% of patients.4–11

BcR stereotypy strongly implies that CLL ontogeny is not
stochastic but instead driven by interactions between the
clonogenic cells and a restricted set of antigenic elements.12,13

CLL subsets expressing certain stereotyped BcRs share
both clinical and biological features. For instance, CLL patients
assigned to subset #1 (IGHV1/5/7/IGKV1(D)-39, unmutated CLL) or
subset #2 (IGHV3-21/IGLV3-21, variable mutational status, however

primarily mutated CLL), comprising the largest stereotyped
subsets overall, collectively account for 6% of all CLL patients11

and display a very poor clinical outcome.7,9,14,15 Further-
more, patients belonging to subset #8 (IGHV4-39/IGKV1(D)-39,
unmutated CLL) appear to have a particularly poor outcome, even
when compared with other clinically aggressive subsets, and
exhibit the highest risk of Richter transformation among all CLL
cases.16,17

Of note, emerging evidence suggests that these distinct
clinical profiles may be linked to a precise functional and genetic
make-up. In particular, certain subsets, including #1, #2 and #8,
have been reported to exhibit subset-biased immune signaling,
gene expression, DNA methylation profiles and genetic aberra-
tions, for example, (i) high frequency of del(11q) in subset #2 and
(ii) high frequency of trisomy 12 and t(14;19)(q32;q13) in subset
#8.18–26 Altogether, these findings imply that distinctive modes of
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microenvironmental interactions mediated by certain stereotyped
BcRs may be associated with selection or occurrence of particular
genetic aberrations, with the combined effect determining both
clinical evolution and eventual outcome.

Very recently, whole-genome and/or exome sequencing have
identified a number of novel recurrent genetic lesions in CLL,
including NOTCH1, the splicing factor SF3B1 and the antiapoptotic
gene BIRC3.27–35 In most published studies, NOTCH1 and SF3B1
mutations were detected at frequencies ranging from 5 to 10% of
patients at diagnosis and, in contrast, sharply increased in
frequency (17–24%) among patients with progressive, refractory
disease and poor outcome.28–30, 36–39 In addition, NOTCH1
mutations appeared to be associated with increased risk of
Richter transformation and were reported to be more frequent
among patients harboring trisomy 12.34,38 Similarly, BIRC3
mutations were associated with clinical aggressiveness, being
detected in up to 24% of fludarabine-resistant CLL.35

Considering the distinct clinical outcomes of various stereo-
typed subsets, where antigen involvement is almost undisputable,
and the observation that while novel gene mutations are present
in only a minor proportion of patients they are associated with
distinct clinical outcome, it became intriguing to explore whether
these mutations were associated with subsets expressing specific
stereotyped BcRs, and thus, by extension, whether such mutations
could correlate with particular immune signaling profiles orche-
strated by their stereotyped BcRs. To this end, we evaluated the
mutation status of the NOTCH1, SF3B1 and BIRC3 genes, all shown
to be associated with clinical aggressiveness, in poor-prognostic
CLL subsets #1, #2 and #8 identified from our large-well annotated
CLL cohort.11 This approach enabled us to uncover striking
differences in the genetic make-up of various stereotyped subsets,
pointing to distinct paths by which CLL clones expressing different
BcRs acquire genomic aberrations.

MATERIALS AND METHODS
Patients and subsets
Patients with CLL assigned to stereotyped subsets #1, #2 and #8 (n¼ 170)
following the criteria recently described by our group8,10,11 were included
in this study. All CLL samples are part of a multicenter cohort with cases
from the Czech Republic, Denmark, France, Greece, Italy, Sweden and the
UK (including patients enrolled onto the LRF UK CLL4 trial40). All cases were
diagnosed according to the International Workshop on Chronic
Lymphocytic Leukemia (iwCLL) established criteria, showing a typical CLL
immunophenotype.41 Informed consent was collected according to the
Declaration of Helsinki and ethical approval was granted by local ethical
review committees.

Detection techniques
Polymerase chain reaction amplification and Sanger sequencing of exon
34 of the NOTCH1 gene; exons 14–16 of the SF3B1 gene; and exons 7–10 of
the BIRC3 gene were performed using standard protocols (protocols and
primers available on demand).

Statistics
Differences in frequencies were evaluated using descriptive statistics.
Overall survival was measured from the date of diagnosis until last follow-
up or death. Time to treatment was evaluated from the diagnostic date
until date of initial treatment. Survival curves were constructed with the
Kaplan–Meier method, and the log-rank test was used to determine
differences between survival proportions. All statistical analyses were
performed using the Statistica Software 10.0 (Stat Soft Inc., Tulsa, OK, USA).

RESULTS AND DISCUSSION
All previous studies describing novel recurrent gene mutations in
CLL included more general CLL cohorts,27–39 thus offering only a
generic overview of their incidence and potential clinical impact.
Considering the underlying heterogeneity of this disease, this

inevitably leads to ambiguity, leaving open many questions as to
their precise relevance in particular subgroups of CLL. To obtain a
more accurate and detailed view, we here for the first time profiled
more homogeneous stereotyped subsets following a conceptual
approach that places the BcR at the center of patient stratification.11

This strategy overcomes the shortcomings of other existing
stratification schema (for example, clinical staging, fluorescence
in situ hybridization-based groupings), which can only recognize
more ‘crude’ and conspicuously less homogeneous categories.

In particular, we evaluated the mutation status of the NOTCH1,
SF3B1 and BIRC3 genes, by sequence analysis of exons with known
hot-spot regions (NOTCH1, exon 34; SF3B1, exons 14–16; BIRC3,
exons 7–10), in well-characterized, aggressive stereotyped CLL
subsets identified from our large CLL cohort.11 Overall, out of 170
CLL patients from stereotyped subsets #1 (n¼ 82), #2 (n¼ 66) and
#8 (n¼ 22), we detected 23/160 (14.4%) NOTCH1 mutations, 24/
119 (20%) SF3B1 mutations and 2/31 (6.5%) BIRC3 mutations. In
the case of NOTCH1 and SF3B1 mutations, the frequencies
reported here are in line with those reported in the literature for
advanced, refractory CLL (B17–24%),34,36,38,39 as one might
expect because of case selection since subsets #1, #2 and #8
represent very aggressive subgroups of CLL. On the other hand,
few mutations were detected in the BIRC3 gene, in keeping with
previous studies in more general cohorts, indicating that this
genetic event is uncommon at diagnosis of CLL and instead tends
to accumulate among refractory CLL.35 This is also supported by
recent findings in our population-based CLL cohort,37 where BIRC3
mutations were extremely rare and detected in very few patients
(R Rosenquist, unpublished data).

Notably, when analyzing separately the frequency of NOTCH1
and SF3B1 mutations in subsets #1, #2 and #8, significant
differences emerged (Figure 1). The most striking difference
concerned the very high frequency of SF3B1 mutation in subset #2
patients (44%) compared with the other poor-prognostic subsets
analyzed (subset #1, 4.7%; subset #8, 0%; Po0.001; Table 1) as well
as to the literature, where even among refractory CLL or cases
with Richter transformation the frequency was distinctly lower
(17%).37,39 This finding, herein reported for the first time, strongly
points to a subset-biased genetic event of critical importance in
the pathobiology of subset #2. That said, the biological reason as
to why subset #2 patients exhibit such a remarkable propensity to
associate with SF3B1 mutations remains elusive and requires
further investigation.

Another unresolved issue concerns the precise clinical sig-
nificance of these aberrations, in particular since we found no

Figure 1. Distinct mutation patterns in different stereotyped subsets.
Striking differences (Po0.001) were identified between subsets #1, #2
and #8 with regard to the frequency of SF3B1 mutations. The
frequency of the NOTCH1 exon 34 mutation was also different
between the subsets and in the case of subset #1 versus #2 also
reached statistical significance (P¼ 0.04).
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differences in time-to-first-treatment (P¼ 0.67) when comparing
subset #2 cases with/without SF3B1 mutations (Figure 2). There-
fore, per se, SF3B1 dysregulation, although remarkably enriched in
subset #2, does not seem to explain the particularly aggressive
phenotype of this subset. Admittedly, the possibility exists that
additional genetic or epigenetic mechanisms may be responsible
for impairing spliceosomal activity among subset #2 cases
negative for the tested SF3B1 mutations. Hence, it remains
to be elucidated how the specific antigenic stimulation through
this distinctive BcR may be implicated in this process of

genetic dysregulation, opening new possibilities for guided
research into the pathogenesis and, in particular, the progression
of subset #2.

The notion that BcR-mediated selection may be intimately
linked to the acquisition of certain genetic aberrations is also
underscored by the profiling of subsets #1, #2 and #8 for the 2-bp
deletion in exon 34 of the NOTCH1 gene, which accounts for more
than 90% of all NOTCH1 gene mutations.28 In contrast to
mutations in SF3B1, this aberration is relatively rare in subset #2,
being present in only 8% (5/60) analyzed cases, similar to
published reports on more general cohorts.37,39 In our study,
NOTCH1 hotspot mutation was more frequent in both subset #1
(19%) (15/78) and subset #8 (14%) (3/22), similar to the frequency
reported for advanced, refractory CLL36,38 of note, the difference
between subsets #1 and #2 was statistically significant (P¼ 0.04).
This result suggests that NOTCH1 aberrations either do not occur
or are selected against in subset #2, and hence are less relevant
clinically as compared with other poor-prognostic CLL cases.36,38

However, their precise significance, especially in subset #8,
requires further analysis in a larger group of patients, although
this might prove logistically difficult if only for the fact that subset
#8 accounts for just 0.2–0.3% of all CLL. Notwithstanding, this
analysis would elucidate the links, if any, between NOTCH1 defects
with trisomy 12 and Richter’s transformation, both reported as
distinctive features of subset #8.

Overall, these novel findings are particularly intriguing as they
raise a number of puzzling questions. Any given CLL is ‘born’
with a distinct BcR, while the novel mutations linked to
aggressive disease are thought to accumulate later in the natural
history of the disease, due either to the occurrence of de novo
mutations or to the expansion of initially minor subclones
bearing mutations. If this holds true, the strong association
between the subset #2 BcR and SF3B1 mutations observed herein
suggests a potential direct or indirect causative relationship
between particular antigenic stimulation/immune signaling and
the occurrence of genetic lesions in selected pathways. As
antigen stimulation is thought to occur in many if not all CLL
cases, the finding that specific gene mutations, on the contrary,
cluster mainly within specific antigen-defined subsets indicates
that BcR stimulation per se can be important for the occurrence
of the genetic lesions, at least for certain subsets of cases. Along
this reasoning, one might postulate that the qualitative or
quantitative aspects of each specific BcR stimulation endowed
by/linked to certain distinctive BcR must be relevant, being
different in each subset depending on the type of antigenic
elements and the type of antigen/antibody interactions that are
distinct for different subsets.

In summary, for the first time, we unveiled distinct patterns of
mutations in the NOTCH1 and SF3B1 genes among different major,
poor-prognostic stereotyped subsets, pointing to subset-biased
acquisition of genetic events along with distinct antigen stimula-
tion during disease evolution. This new concept, whereby specific
antigenic stimulation and occurrence of genetic lesions in key
cellular pathways are linked, offers a compartmentalized view of
the biology of CLL with implications for individualized therapies.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
This research was supported by the Nordic Cancer Union, the Swedish Cancer
Society, the Swedish Research Council and the Lion’s Cancer Research Foundation,
Uppsala, Sweden; Associazione Italiana per la Ricerca sul Cancro (AIRC) (Investigator
grant and Molecular Clinical Oncology Program 5xMille no. 9965), Milano, Italy;
Ricerca Finalizzata 2010, Ministero della Salute, Roma, Italy; PRIN, MIUR, Roma, Italy;
Leukaemia and Lymphoma Research, UK; The Kay Kendell Leukaemia Fund, London,

Table 1. SF3B1 mutation profile in stereotyped subsets of CLL

Subset
# 1,
n¼ 3

Subset
# 2,

n¼ 21

Exon Codon Amino-acid
change

Mutation
type

0 14 15 700 Lys–Glu Missense
1 3 16 742 Gly–Asp Missense
0 1 14 626 Asn–Ile Missense
1 0 15 704 Ile–Asn Missense
1 0 14 626 Asn–Ser Missense
0 1 14 622 Glu–Asp Missense
0 1 16 784–785 — Deletion*
0 1 16 745 Ala–Pro Missense
0 1 14 622 Glu–Val Missense

Analysis of exons 14, 15 and 16 of the SF3B1 gene in 119 cases assigned to
subsets #1, #2 or #8 revealed 25 mutations. No mutations were observed in
subset #8 cases, three mutations were observed in subset #1, while the
remaining 22 mutations were found in subset #2 Notably, the recurrently
targeted hotspot (codon 700) was only found mutated in subset #2 (14/25).
One subset #2 case carried a mutation at both codon 700 and codon 742.
*c.2352_2354delGAA

Figure 2. Survival curves for subset #2. No differences were
identified with regard to time-to-first-treatment (a) or overall
survival (b) in subset #2 patients based on the presence or absence
of SF3B1 mutations.
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