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SUMMARY

The cystovirus f6 shares several distinct features
with other double-stranded RNA (dsRNA) viruses,
including the human pathogen, rotavirus: segmented
genomes, nonequivalent packing of 120 subunits in
its icosahedral capsid, and capsids as compart-
ments for transcription and replication. f6 assem-
bles as a dodecahedral procapsid that undergoes
major conformational changes as it matures into
the spherical capsid. We determined the crystal
structure of the capsid protein, P1, revealing a flat-
tened trapezoid subunit with an a-helical fold. We
also solved the procapsid with cryo-electron micro-
scopy to comparable resolution. Fitting the crystal
structure into the procapsid disclosed substantial
conformational differences between the two P1 con-
formers. Maturation via two intermediate states in-
volves remodeling on a similar scale, besides huge
rigid-body rotations. The capsid structure and its
stepwise maturation that is coupled to sequential
packaging of three RNA segments sets the cystovi-
ruses apart from other dsRNA viruses as a dynamic
molecular machine.

INTRODUCTION

Double-stranded RNA viruses have a wide host range, including

animals, plants, fungi, and bacteria, but share a number of

distinct properties (Patton, 2008). Their genomes comprise mul-

tiple (up to 12) linear segments and are typically accommodated

in multiple nested protein shells (capsids). After cell entry, the

genome remains inside the innermost capsid that also houses

the viral RNA-dependent RNA polymerase. This particle func-

tions as a replication machine or polymerase complex where

mRNAs are transcribed and secreted. Related particles, called

procapsids, are formed early in the assembly of next-generation
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virions. They package single-stranded RNA (ssRNA) segments,

synthesize second strands, and finally transcribe. The overall

architecture of these inner capsids is similar in all double-

stranded RNA (dsRNA) viruses, consisting of 120 copies of a

major capsid protein organized in a T = 1 icosahedral shell built

from 60 dimers of nonequivalent subunits. An important and still

unanswered question is: How is a single copy of each segment

selected and packaged?

High-resolution structures have been determined with X-ray

crystallography and cryo-electron microscopy (cryo-EM) for

the inner capsids of several dsRNA viruses, including several

reoviruses (Grimes et al., 1998; Nakagawa et al., 2003; Reinisch

et al., 2000), birnaviruses (Coulibaly et al., 2005), picobirnavi-

ruses (Duquerroy et al., 2009), and totiviruses (Naitow et al.,

2002). Except for birnaviruses, the shell is formed by 60 dimers

of nonequivalent subunits, denoted A and B, an architecture

encountered in no other virus family. Twelve pentamers of

A-subunits are centered on the 5-fold vertices and 20 trimers

of B-subunits on the 3-fold axes. Although both subunits have

identical sequences and similar folds, they tend to differ some-

what in local features and radically in intersubunit interactions

(Grimes et al., 1998; Jäälinoja et al., 2007; Nakagawa et al.,

2003; Reinisch et al., 2000).

Cystoviridae are the only family of dsRNA viruses that infect

bacteria. They were also the first dsRNA viruses for which

reverse genetics has been developed (Mindich, 1999a, 1999b;

Olkkonen et al., 1990), an asset that commended them as a

model system for studying assembly and replication of dsRNA

viruses. In consequence, much biochemical and genetic data

have been collected concerning their replication cycle (Frilander

and Bamford, 1995; Mindich, 1999a; Poranen and Bamford,

2012).

Bacteriophage f6, the type member of the Cystoviridae,

initially assembles as an RNA-free procapsid with deeply re-

cessed vertices, giving it a dodecahedral morphology (Butcher

et al., 1997). The procapsid accommodates the polymerase

(P2) and an accessory protein (P7), which has a regulatory func-

tion in assembly and RNA packaging (Poranen et al., 2008). P2 is

bound to the inner surface of the procapsid (Nemecek et al.,

2010; Sen et al., 2008) at sites close to the 3-fold axes that
l rights reserved
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Table 1. Crystallographic Statistics

Space Group C 2221

Cell dimensions (Å) a = 182.59

b = 278.85

c = 246.47

X-ray source SER-CAT 22 ID

Wavelength (Å) 0.97899

Resolution (Å) 3.60 (3.66–3.60)

Total reflections 1,043,858

Unique reflections 66,561

I/s(I) 11.15 (2.04)

Data completeness (%) 91.07 (41.67)

Multiplicity 15.7 (2.3)

Rwork (%) 21.7

Rfree (%) 27.4

Rmerge (%) 19.2

Rmsd bond angle deviation (�) 1.41

Rmsd bond length deviation (Å) 0.008

Ramachandran favored (%) 95.0

Ramachandran outliers (%) 0.03

Number of non-hydrogen atoms 29,435

Rmsd, root-mean-square deviation.
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overlap those occupied by P7 (Nemecek et al., 2012; Sun et al.,

2012). On the outer surface of the procapsid, hexamers of the

packaging NTPase (P4) overlie the 5-fold vertices (de Haas

et al., 1999; Pirttimaa et al., 2002).

Packaging of the three ssRNA segments proceeds in order

from the shortest segment (s, 2,948 nt) to the m-segment

(4,063 nt) and finally the l-segment (6,374 nt; Mindich, 1999a).

Packaging is accompanied by a major structural transformation

that yields the spherical mature capsid, with a net volume in-

crease of �250%. It has been proposed (Mindich, 1999a) that

the transformation proceeds stepwise, sequentially exposing

binding sites for each RNA segment on the outer surface of the

maturing procapsid. A binding site for the s-segment has been

localized to the region between amino acids 98 and 155 of P1

by crosslinking (Qiao et al., 2003b). In support of this scenario,

two expansion intermediates have been observed (Nemecek

et al., 2011). The shell conformation also controls the activity of

the polymerase P2 that begins to synthesize second (minus)

RNA strands only after all three segments are packaged

(Frilander et al., 1992).

The present study has aimed to gain insight into the mecha-

nisms that control assembly, maturation, and functioning

of the polymerase complex. To do so, we set out to crystallize

P1 and complemented this approach with cryo-EM and

image reconstruction of the procapsid. Both approaches

succeeded. Then by fitting the crystal structure into cryo-EM

density maps, we were able to characterize the structural

alterations undergone by P1 as it adapts to the P1A and P1B
conformations. Applying the same approach to earlier recon-

structions of the mature capsid (Huiskonen et al., 2006) and

two expansion intermediates (Nemecek et al., 2011), we were

able to follow the molecular rearrangements that occurred
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during maturation. From these models, we could identify

a positively charged cavity that is open on the procapsid

and likely to bind the s-segment but closed and therefore

inaccessible in the expansion intermediates and mature

capsid, observations consistent with the sequential packaging

hypothesis.

RESULTS

Crystallization of P1
Our initial crystallization trials with monomeric P1 produced

crystals but they diffracted only to �6 Å. Later, a mixture of

P1 and P7 yielded crystals diffracting to 3.6 Å. Because they

could not be separated from a film of denatured protein, we

were unable to determine whether they also contained P7.

Nevertheless, they sufficed to solve the structure of P1.

Because the self-rotation function suggested a pentamer in

the asymmetric unit, we used the P1 pentamer from an earlier

cryo-EM map at 7 Å resolution as a search model for molecular

replacement. Phases were extended to 3.6 Å, using noncrystal-

lographic symmetry (Table 1). In the resulting density map (Fig-

ure S1A available online), the entire P1 subunit was well ordered

except for a few C-terminal residues and it was possible to

trace the whole Ca chain and almost all side chains (e.g., Fig-

ure S1B), apart from several flexible Arg and Lys residues. We

did not find any density attributable to P7 but cannot rule out

that P7 was present at low occupancy or in a disordered state

and somehow promoted P1 assembly into pentamers or stabi-

lized a conformation that allowed the growth into well-ordered

crystals.

P1 Has an a-Helical Fold
The P1 subunit (Figure 1B) has a trapezoid shape with sides of

�91 Å 3 73 Å. The thickness varies between 14 Å and 38 Å at

the edges, reaching 47 Å at the center. The structure is mostly

a-helical (46% of residues; Figures S1C and S1D), in agreement

with Raman spectroscopy data (Benevides et al., 2002) and

cryo-EM reconstructions at �7 Å resolution that resolved many

rod-like densities—putatively a helices—in both the procapsid

(Nemecek et al., 2012) and the nucleocapsid (Huiskonen et al.,

2006). We found no similar fold—and in particular, no similar

capsid protein fold—when using the DALI server (Holm and

Rosenström, 2010).

The N terminus forms a ‘‘latch’’ over two helices located in the

middle of the structure (blue in Figure 1B). This is followed by a

long loop connected to the ‘‘tip’’ region, featuring six a helices.

The next part is a set of four helices forming the ‘‘corner’’ of

the trapezoid. The central part of the polypeptide chain is

composed of long extended loops interspersed with a few heli-

ces. This region largely separates the N- and C-terminal thirds.

Finally, the C-terminal part starts with a two-strand b sheet form-

ing a protruding hairpin (yellow in Figure 1B). This is followed by a

long helix-loop-helix (the ‘‘lever’’), three helices denoted the

‘‘anchor,’’ and the C-terminal helix and loop. These C-terminal

helices form an interface that maps to the P1B subunits in

the procapsid where a large ‘‘hinge’’ motion contributes to the

expansion of the shell (see below). The hinge region also inter-

faces the P1A to the P1B subunits around the rim of the P1A
pentamer (Figure 2A).
–1383, August 6, 2013 ª2013 Elsevier Ltd All rights reserved 1375



Figure 1. Crystal Structure of P1

(A) Top and side views of the funnel-shaped P1 pentamer (the five subunits are in different colors).

(B) The P1 subunit (rainbow-colored from blue at the N terminus to red at the C terminus) has a trapezoid shape with four edges labeled I–IV. The long helix-turn-

helix (in gold) forms a ‘‘lever’’ that rotates during maturation of the procapsid. Five copies of the ‘‘tip’’ line the axial channel through the pentamer. The ‘‘corner’’ of

one pentamer subunit fits against the ‘‘anchor’’ of a neighboring subunit.

See also Figure S1.
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To describe the intersubunit interfaces in the procapsid

(below), we designate the four edges of the trapezoid as I–IV (Fig-

ure 1B). Only edges I and II are involved in intersubunit inter-

actions in the crystallized pentamer (Figure 1A), and they show

good complementarity of positive and negative residues. The

buried surface at this interface is 9,248 Å2, suggesting a very

stable pentamer.

Expression of Quasi-Equivalence in the Procapsid
We determined the procapsid structure by cryo-EM to a resolu-

tion of 4.5 Å (Box 1). The features visualized, such as regular

helical grooves on a helices, separation of loops and b strands,

and densities for bulky side chains, validate the calculated res-

olution (Figure S2). With some discrepancies (see below), the

crystal P1 pentamer fits snugly into the P1A pentamer, and

the P1 monomer could be placed into the P1B-related density

without ambiguity. The molecular boundaries (Figure 2A) agree

with those inferred from previous cryo-EM maps of the nucleo-

capsid (Huiskonen et al., 2006) and the procapsid (Nemecek

et al., 2012). Each edge of the trapezoid forms two different in-

terfaces with other P1 subunits. In the P1A pentamer, edges I

and II are apposed. Edge II in P1B fits across two edges from

different P1A subunits (one an edge III and the other an edge

IV). The P1B edges I and IV constitute the intratrimer interfaces

around the 3-fold axis. At the 2-fold axis, the apposing P1B edge

III meet to form the major hinge involved in expansion (see

below).
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We performed flexible fitting of crystal P1 into the P1A density.

The quality of the density in the cryo-EMmap gave confidence in

the reliability of the results. Overall there is good correspondence

but with significant differences that reflect adaptation of the pro-

tein conformation to the context of the procapsid. The largest dif-

ference is in the hinge region, where four helices (H24, H25, H28,

and H29) are rotated (by �18�) to accommodate the adjacent

P1B in the procapsid (Figure 3B). The C-terminal helix is also

shifted, positioning the C terminus of P1A into a hydrophobic

groove in the neighboring P1B subunit.

In P1B, on the other hand, the hinge region and the C-termi-

nal helix are essentially the same as those in crystal P1, as

are the loops and helices at the II–IV interface with the adjacent

P1B subunit. The most pronounced differences in P1B affect the

tip region at the interface with P1A (Figure 3C). Here, two heli-

ces are rotated through �27� and 9�, respectively, to accom-

modate displacement of loops at the P1A/P1B interface.

Changes in P1 during Capsid Maturation
Procapsid maturation during RNA packaging involves massive

conformational changes and accompanying changes in size

and shape (cf. Figures 3A and 3D). To determine the changes

in the conformations and interactions of P1A and P1B subunits,

we performed flexible fitting with crystal P1 into a nucleocapsid

map at 7.5 Å resolution (Electron Microscopy Data Bank [EMDB]

ID: emd1206; Huiskonen et al., 2006; Figures 3E and 3F). This

exercise showed that the principal mechanism has large-scale
l rights reserved



Figure 2. Cryo-EMReconstruction of thef6

Procapsid

(A) Segmentation of the outer surface viewed

along a 5-fold axis. The 12 inverted 5-fold vertices

are occupied by P1A pentamers (the five subunits

are in shades of blue) set in a dodecahedral frame

of 60 P1B subunits (red, except for the three sub-

units around one 3-fold axis, which are in shades

of yellow).

(B) Density for one a helix (left) and two b strands

with the corresponding atomic model (side chains

are shown for the a helix only, for clarity).

(C) Slices through the cryo-EM reconstruction

viewed along the 5-fold axis at 20 Å (left) and 40 Å

(right) from the procapsid center. Elongated

densities representing a helices that are approxi-

mately in-plane are indicated by arrows and

enlarged in the right panels. Scale bar: 100 Å.

See also Movie S2.

Structure

Atomic Model of f6 Maturation
hinging movements around intersubunit interfaces (Figure 4).

The accompanying conformational changes, mainly affecting

P1B, are on the same order as those that distinguish procapsid

subunits from crystal P1. In P1A, the greatest change is in the

long b-hairpin and underlying helices of the anchor that tilt

through �20� (Figure 3E). Interactions with neighboring subunits

also change; e.g., the long helix-turn-helix (the lever) is no longer

connected to the neighboring P1B subunit by the Arg655 salt

bridge.

During expansion, adjacent P1B subunits rotate around a

‘‘pivot’’ axis connecting the 3-fold axes through the 2-fold axis

(Figures 4A and 4B). The planes of the two subunits meet at an

angle of �98� in the procapsid, changing to �148� in the nucle-

ocapsid (Figures 4C and 4D). This movement results in much

larger buried surfaces for both subunits (�50% increase for

P1B and �16% for P1A) and a better match of complementary

charged residues. At the intramolecular level, the lever shifts

away from the 2-fold icosahedral axis and is further tilted �25�

within the subunit, pointing toward the b-hairpin in the apposing

P1B subunit (arrows in Figures 4C and 4D; Movie S2). Concom-

itantly, the hydrophobic C terminus is moved into the uncharged

groove in the opposing P1B subunit.

Staging Posts in the Expansion Reaction
We also had available two expansion intermediates at lower

resolution (18 Å; EMDB IDs: 5355 and 5357). With them, we per-

formed rigid-body fitting, using theP1A andP1B conformations of

both the procapsid and the mature capsid. In both particles, the

best fits were obtained with P1A in its procapsid conformation
Structure 21, 1374–1383, August 6, 2013 ª
andP1B in its nucleocapsid conformation.

Figure 5andMovieS3show the sequence

of transitions, starting with the compact

procapsid and expanding to the almost

spherical mature capsid and a markedly

thinner P1 shell. The large change in the

hinge regionoccursmainly in the first tran-

sition from the procapsid to expansion in-

termediate 1, which has the lowest-

energy state of the P1 shell (not the fully
mature shell; Nemecek et al., 2011). Subsequent changes in

the expansion involve smaller rearrangements, mainly around

the hinge and tip regions.

DISCUSSION

Cystoviruses are of interest as dsRNA viruses that provide trac-

table experimental systems. The molecular composition and

assembly of the procapsid have been studied extensively, and

high-resolution structures have been determined for three of its

four proteins: the P2 RNA-dependent RNA polymerase of f6

(Butcher et al., 2001), the P4 packaging motor of f12 (Mancini

et al., 2004), and the P7 packaging facilitator of f12 (Eryilmaz

et al., 2008). Here we complete the ensemble with the structure

of P1 from f6 and show how the procapsid serves as a frame-

work towhich the other three proteins bind and how it transforms

during maturation.

We detected no similarity of the P1 fold with the known folds of

the capsid proteins of other dsRNA viruses. To the extent that the

capsid protein fold may be viewed as a hallmark of common

ancestry (Bamford et al., 2005), this distinction would suggest

that cystoviruses originated in a different lineage than other

dsRNA viruses. P1 does share with them the distinctive,

nonequivalent, 120-subunit capsid geometry but the in-plane

shapes of the subunit and of the pentamer of A-subunits, which

is quite pentagonal in the case of f6, are markedly different be-

tween the respective systems.

Another property that sets cystoviruses apart from other

dsRNA viruses is the large-scale conformational changes that
2013 Elsevier Ltd All rights reserved 1377



Box 1. Single Particle Analysis: Statistics

Number of Micrographs 154

Number of particle images 28,194 (65% used)

Defocus range (mm) 1.3–3.2

FSC0.3 (Å) 3.9

FSC0.5 (Å) 4.4
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occur during maturation. In this respect, they are more akin to

the capsids of tailed bacteriophages (Conway et al., 2001;

Gertsman et al., 2009; Lata et al., 2000) than to other dsRNA

viruses, although the respective folds (the HK97 archetype; Wik-

off et al., 2000; in the case of tailed phages) and architecture

differ. (Tailed phages assume quasi-equivalent capsid geome-

tries, and a variety of T-numbers; Dearborn et al., 2012; Duda

et al., 2006.) In the same vein, there is no evidence that the inner

capsids of other dsRNA viruses undergo comparable structural

changes. Insofar as these stepwise transitions of the maturing

f6 procapsid may afford a mechanism for selecting one copy

each of the three RNA segments—a proposition for which there

is supporting evidence but not yet a conclusive proof—this
Figure 3. Conformational Changes between the Crystal, Procapsid, an

(A) Cryo-EM reconstruction of the procapsid with subunits color-coded as in Fig

(B) Differences between the P1A subunit in the procapsid (blue) and the P1 crystal s

arrow in A).

(C) Comparison of P1A (black) and P1B (red) in the procapsid, showing differenc

affected and additional differences at the tip (white arrow).

(D) Cryo-EM reconstruction of the nucleocapsid (EMD-1206; Huiskonen et al., 20

(E) Changes in the P1A structure onmaturation (procapsid, blue; nucleocapsid, gre

in C).

(F) Changes in the P1B structure on maturation (procapsid, red; nucleocapsid, yel

Scale bar: 100 Å.
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would also suggest that the other dsRNA viruses select their

complements of segments for packaging by a different

mechanism.

Mapping Functional Sites on the P1 Lattice
Previous studies have identified the residues involved in the scis-

sile sites on the procapsid for two proteases and in the epitope

for a monoclonal antibody (Qiao et al., 2003b). The procapsid

structure demonstrates the locations of these sites on its outer

surface (Figure 6; Figure S3), where they should be, for accessi-

bility. As such, these observations help to validate the deter-

mined structure.

The other three proteins interact only with P1A: P2 and P7

bind on the inside of the procapsid (Katz et al., 2012; Nemecek

et al., 2012; Sen et al., 2008) and P4 on the outside (de Haas

et al., 1999; Pirttimaa et al., 2002). The overlapping footprints

of P2 and P7 cover the tip region of P1A. Crosslinking of the

s-segment and mutants that affect s-segment packaging (Qiao

et al., 2003a) also map to the tip (Figure 6), indicating this region

as the likely s-segment binding site. This region is exposed to the

exterior in P1B whereas it is covered by P4 hexamers in P1A (Fig-

ure 6A). Consequently, the s-segmentmost likely binds to P1B on
d Mature Capsid States of P1

ure 2A but viewed from a different angle.

tructure (dark gray) are localizedmainly to the hinge region (black arrows, white

es of similar magnitude to those in (B): black arrows point out features most

06) segmented as in (A).

en) localize in the helices next to the hinge region (black arrows andwhite arrow

low) involve the whole of edge III (black arrows) as well as the tip (white arrow).

l rights reserved



Figure 4. Transformation at the Hinge

(A) P1B subunits (red and yellow) are tightly con-

nected to P1A subunits (blues) of the inverted

vertices in the procapsid. This shell contains cav-

ities between the P1B and P1A subunits (arrows).

(B) In the nucleocapsid, the P1B subunits are

rotated so that the planes of these flat molecules

coincide with the tangential plane of the shell,

leaving no significant cavities between the sub-

units.

(C) Orientation of P1B subunits (red and yellow

ribbons) on either side of a 2-fold icosahedral axis

in the procapsid. The subunit planes are almost

perpendicular to each other, and their helix-turn-

helix motifs are aligned with the 2-fold axis

(arrows).

(D) Corresponding representation of two P1B
subunits in the nucleocapsid. The two subunits are

now almost coplanar. (The views shown in C andD

are rotated around the 2-fold axis so that the

dihedral angles appear considerably larger.)

See also Movie S2.
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the procapsid exterior, while the positively charged tips of P1A
interact with RNA that has translocated through the axial chan-

nel. The overlap with sites of mutants affected in m-segment

packaging (Qiao et al., 2003a) suggests some commonality in

the binding sites of the first two segments to be packaged.

The binding site for the s-segment has been mapped to the

polypeptide segment between Cys98 and Cys155 of P1 (Qiao

et al., 2003b). This segment is located near the tip (Figure 6). In

P1A, it lines the RNA-packaging channel at the 5-fold vertex. In

P1B, its residues are exposed on the procapsid surface near a

cavity between tilted P1B subunits at the periphery of the P1A
Structure 21, 1374
pentamer. The cavity, which is �60 Å from the 5-fold axis (Fig-

ure 5B), is positively charged with contributions from Arg104

and Lys105 on P1B and Arg523 on the neighboring P1B. Presum-

ably, the negatively charged sugar-phosphate backbone of the

s-segmentpacsite (�200nucleotidesnear the50 endof thessRNA)
binds in this cavity. Subsequently, the cavity closes as the procap-

sid converts to the first expansion intermediate (Figure 5).

It is likely that the segment-binding sites involvemore than one

molecule of P1 and are located some distance away from the P4

hexamers because deletion of 22 nucleotides in the s-sequence

50 to the pac sequence was able to prevent packaging but
Figure 5. Procapsid Expansion

(A) Cryo-EM reconstructions of three conforma-

tional states of the f6 capsid at 16 Å resolution.

(B andC) Models of a portion of capsid comprising

a pentamer of P1A subunits (blue, green) and

surrounding P1B subunits (red, yellow) subunits,

viewed from above (B) and from the side (C).

Expansion to intermediate 1 is the major transition

of thematuring capsid, achieved by rotation of P1B
subunits around an axis connecting the 3-fold

icosahedral axes (bar in A). This rotation appears

to stabilize the P1B/P1B interface at the 2-fold axis

(Figure 6) and seals gaps between P1A and P1B
subunits near the 3-fold axis (arrow). Further

expansion to intermediate 2 is achieved by out-

wardmovement of the P1A subunits. The final step

to the nucleocapsid state is accompanied by local

conformational changes in the P1A subunits that

correlate with increased outward curvature at the

5-fold axis. Scale bar: 50 Å.

See also Movie S3.

–1383, August 6, 2013 ª2013 Elsevier Ltd All rights reserved 1379



Figure 6. Regions of P1 Interaction

(A) Regions of P1 interacting with the s-segment (green) and a monoclonal antibody (red) are shown for the P1A and P1B subunits, respectively, in the context of

the procapsid shell. The circle represents the area covered by the P4 hexamer.

(B) Locations of mutations in P1 affecting s- and m-segment binding (magenta) and packaging (orange) are shown for the P1A (cyan) and P1B (yellow) subunits.

The proteolytically susceptible sites for factor Xa and trypsin are also shown (black). The subunits are oriented as in the procapsid (A) and viewed from the outside.

See also Figure S3.
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allowed binding and competition with normal binding and pack-

aging (Qiao et al., 1997).

Mutations that Alter RNA Packaging also Affect the
Procapsid Conformation
Even small changes in the pac sequence have drastic effects

on RNA packaging. Point mutations in P1 can suppress pac

sequence mutations or, conversely, may prevent the wild-

typeRNA sequences frombinding (Qiao et al., 2003b). The amino

acid replacements that eliminate s-segment binding (WR103VA,

R385A, and RR617AA) are located near edge II of P1 on the pro-

capsid exterior (Figure S3A). These residues are not clustered

and the mutations probably act independently. Residue R196 is

located inside the P1 fold in the tip (Figure S3B) and the

RR617AA mutant probably disrupts interactions in the adjacent

s-segment binding site. Suppressors of the R196 mutation

(T316I and A402T) are not close to this site, implying that long-

range allosteric effects are involved. Similarly, the suppressors

Y486C or Y486S map in different regions of P1 (Figure S3D). On

the other hand, suppressors of the Spac and Mpac mutants all

map close to the s-segment binding site, suggesting direct

interactions with it (Figures S3E and S3F). Moreover, they sug-

gest that the binding sites for the s- and m- segments are close

together.

Conformations of P1 in the Procapsid: Implications
for Assembly
Attachment of P1B subunits around the rims of the P1A pentam-

ers is accompanied by conformational changes at the P1A/P1B
interface. The lever in P1A is bent through �18� and interacts

with two adjacent P1B subunits. The adjacent C-terminal helix

in P1A is also affected, being bent toward the P1A /P1B interface,

with the hydrophobic C terminus inserted into a hydrophobic

pocket in P1B.
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The conformation of P1B subunits in the procapsid is also

altered at the interface with P1A subunits at the tip. Loops and

helices are bent in this region to accommodate attachment to

helix bundles in P1A. However, the conformation of the P1B/

P1B interface at the 2-fold icosahedral axis corresponds to the

conformation in the crystal structure (Figure 3C). Although there

are complementary electrostatic interactions across this inter-

face, the negatively charged tips of the levers come into prox-

imity. The P1B subunits are relatively tilted against each other

by �90�, resulting in an interface with the neighboring subunits

that is �20% smaller compared with P1A in the procapsid (Fig-

ure 4). Similarly, the interfaces between P1B subunits around

the 3-fold icosahedral axis are relatively small and there are

appreciable cavities between the P1B subunits and the P1A
vertices (Figure 5B). These considerations suggest that P1B sub-

units may attach to preassembled P1A pentamers and connect

them into a dodecahedral shell in an overall conformation that

is suboptimal but is later optimized during maturation.

Conformations of P1A and P1B: Implications
for Maturation
In maturation, the conformation of P1A subunits changes mainly

in the hinge region, where the large b-hairpin and the underlying

helices bend through�20�. Also, loops at their interface with P1B
change to accommodate intersubunit interactions (Figure 3E).

As for P1B conformation, the entire subunit is affected, particu-

larly in the hinge region. The lever is bent�26� from the icosahe-

dral 2-fold axis, and its position is replaced by the C-terminal

helix (Figures 3F and 4D). This change accompanies a large

rigid-body rotation of P1B (Movie S2) that interlocks P1B subunits

around the 3-fold icosahedral axes and closes pre-existing

cavities between subunits. In this way, the buried surface area

per P1B subunit increases by �50% in the nucleocapsid and

becomes comparable to that of P1A.
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Knowledge of the procapsid and nucleocapsid structures

illuminates numerous aspects of assembly, maturation, and

packaging. However, weighty issues remain. How does the

s-segment engage with P4, the packaging NTPase after attach-

ing to its binding site? Do the P2 polymerasemolecules remain in

place during maturation? How does their location affect tran-

scription and replication? In particular, why is packaging of the

s-segment confined to a single copy when 60 binding sites are

distributed over the procapsid surface? Here, one possibility is

kinetics; i.e., binding of a single s-segment may be sufficient to

induce rapid conversion of the procapsid to the expansion inter-

mediate 1 conformation, precluding further s-segment pack-

aging (Nemecek et al., 2011).

EXPERIMENTAL PROCEDURES

Expression and Purification of P1 and P7 Subunits

Genes for expression of the full-length P1 and truncated P7 (residues 1–150)

subunits were extracted from plasmids pLM3572 and pLM3623, respectively,

and recloned into the first cassette of the pRSFD vector. The plasmids were

transformed into Escherichia coli BL21(DE3) Star cells and overexpressed

overnight at 20�C after induction with 0.5 mM isopropyl thiogalactoside

(IPTG) at optical density (OD) = 0.8. The proteins contained a C-terminal

His6-tag and were purified from the cell extract with affinity chromatography,

using Ni-NTA resin (QIAGEN). P1 was further purified with size-exclusion chro-

matography using a Superdex 200 column (GE Healthcare) equilibrated in

20 mM Tris, pH = 7.4, 75 mM NaCl, and 3 mM DTT buffer. The protein eluted

in two peaks corresponding to monomer and dimer. Fractions from the mono-

mer peak were pooled and concentrated to �8 mg/ml, flash-frozen in liquid

nitrogen, and stored at�80�C. P7was further purified using aSuperdex 75 col-

umn (GE Healthcare) equilibrated in 10 mM Tris, pH = 7.4, 30 mM NaCl, 4 mM

DTT, and 1 mM EDTA buffer. P7-containing fractions were pooled, concen-

trated to 2.5 mg/ml, and stored at �80�C.

Crystallization, Data Collection, and Structure Determination

To obtain crystals that diffracted beyond �6 Å resolution, we used a P1:P7

mixture in a 2:1 molar ratio at a total concentration of 2 mg/ml. These crystals

were grown in hanging drops consisting of a 1:1 mixture of the protein and well

solution (100 HEPES, pH = 7.5, 180 mM calcium acetate, 10 mM EDTA, and

39% PEG 400) at 293 K. Data sets were collected from three crystals using

a MAR CCD detector at beamline 22-ID (Advanced Photon Source,

Argonne, IL) and merged in the program HKL2000 (Otwinowski and Minor,

1997), yielding a complete data set at 3.6 Å. The self-rotation function sug-

gested a pentamer in the asymmetric unit and therefore we used a 7 Å EM

map of the P1A pentamer extracted from the wild-type procapsid (EMDB

code EMD-2341; Nemecek et al., 2012) as a search model for molecular

replacement. We found a good solution with LLG = 470 and Rfactor =

50.4%. Thereafter, the phases were extended to 3.6 Å resolution using non-

crystallographic symmetry. The initial model was built by the program Bucca-

neer of the CCP4 package (Cowtan et al., 2011; Cowtan, 2012) and manually

refined using Phenix (Adams et al., 2010) and Coot (Emsley and Cowtan,

2004). The model was refined to Rwork = 21.7% and Rfree = 27.4% (Table 1).

Preparation and Purification of f6 Procapsids

Procapsids were produced in E. coli strain JM109 using the plasmid pLM687

(Mindich et al., 1994) to co-express wild-type P1, P2, P4, and P7 proteins (as

P1247 procapsids), then extracted and purified as described previously (Nem-

ecek et al., 2011). Prior to experiments, the samples were transferred into

buffer P (10 mM potassium phosphate and 5 mM MgCl2, at pH 8.0) using

Zeba-midi buffer exchange columns with a 7-kDa cutoff (Thermo Scientific,

Rockford, IL).

Cryo-EM

Drops of f6 procapsids at �10 mg/ml protein concentration were applied to

glow-discharged C-flat grids (Protochips, Raleigh, NC), blotted, and plunge-

frozen in liquid ethane using a Vitrobot (FEI, Hillsboro, OR) that had been equil-
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ibrated at 25�C and 90% humidity. The vitrified specimens were imaged at

47,0003 nominal magnification and 1.0–2.0 mm underfocus with the FEI Titan

Krios microscope at UCLA (courtesy of Dr. Z.H. Zhou and FEI). The

microscope was operated at 300 kV and micrographs were recorded on

SO163 Kodak film at �15 e�/Å2 per exposure.
Image Processing

Micrographs were digitized using a Nikon Super Coolscan 9000ED at 4,000

dpi. Image processing was done with the EMAN1 package (Baker et al.,

2010; Ludtke, 2010; Ludtke et al., 1999; Wu et al., 2013) and Bsoft (Heymann

and Belnap 2007; Nemecek et al., 2012). The initial model was derived from the

previously determined procapsid map at �8 Å resolution (Nemecek et al.,

2012). An angular step size of 0.6� was used for global grid searches over

the asymmetric unit. Icosahedral reconstructions were calculated using

e2proc3d.py in EMAN2 and their resolution estimated by Fourier shell correla-

tion between reconstructions from two half data sets at the 0.5 cut-off

(Figure S2).
Flexible Fitting of the P1 Structure into the Procapsid

Initially, the P1 crystal structure was rigid body-fitted into the procapsid map

filtered to 7 Å resolution, using Chimera (Goddard et al., 2005; Pettersen

et al., 2004). P1A and P1B were fitted independently, while the EM map was

rescaled from from 1.351 Å/pixel to 1.397 Å/pixel to maximize cross-correla-

tion of the fits. Regions where the crystal structure deviated significantly

from the EM density were roughly adjusted in Coot (Emsley and Cowtan,

2004) and then the P1A and P1B structures were flexibly fitted using the

MDFF package (Trabuco et al., 2009). The fitted structures were further fitted

into the EM map of the procapsid filtered to 4 Å resolution together with all

neighboring subunits to avoid clashes at the P1A and P1B interfaces. Finally,

both structures were visually inspected and refined in Coot.
Flexible Fitting of P1 into the Nucleocapsid

Here, the cryo-EMmap of the f6 nucleocapsid (EMDB ID: emd-1206; Huisko-

nen et al., 2006) was used. This mapwas rescaled and sharpened tomatch the

current cryo-EM map of the procapsid and band-pass-filtered to 7 Å resolu-

tion. As in the flexible fitting of P1 into the procapsid map, P1 was initially rigid

body-fitted into the map using Chimera and then manually adjusted in Coot.

The rod-like densities in the map corresponded well to the a helices of the

fitted P1 structure. We further refined the adjusted structures by flexible fitting

withMDFF. All subunits surrounding a given subunit (P1A or P1B) were included

in the fit.
Rigid Body-Fitting of P1 into the Expansion Intermediates

The P1A and P1B structures were transformed into EM density and band-pass-

filtered to 16 Å resolution using bsf in Bsoft (Heymann and Belnap, 2007) and

fitted into cryo-EM maps of the two expansion intermediates, using the sym-

metry-fitting algorithm in Chimera. The fit was done in two steps: initially,

P1A and P1B subunits were fitted into the asymmetric unit. Then, their positions

were refined, taking into account all symmetry-related P1A-P1B dimers in the

icosahedral shell. Several starting positions were tested and most solutions

converged to the same P1A and P1B orientations.
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