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Abstract

The recently formulated constrained nudged elastic band method with atomic relaxations (NEB + r) (Gröger R, Vitek V. Model
Simul Mater Sci Eng 2012;20:035019) is used to investigate the dependence of the Peierls barrier of 1/2h111i screw dislocations in
body-centered cubic metals on non-glide stresses. These are the shear stresses parallel to the slip direction acting in the planes of the
h111i zone different from the slip plane, and the shear stresses perpendicular to the slip direction. Both these shear stresses modify
the structure of the dislocation core and thus alter both the Peierls barrier and the related Peierls stress. Understanding of this effect
of loading is crucial for the development of mesoscopic models of thermally activated dislocation motion via formation and propagation
of pairs of kinks. The Peierls stresses and related choices of the glide planes determined from the Peierls barriers agree with the results of
molecular statics calculations (Gröger R, Bailey AG, Vitek V. Acta Mater 2008;56:5401), which demonstrates that the NEB + r method
is a reliable tool for determining the variation in the Peierls barrier with the applied stress. However, such calculations are very time
consuming, and it is shown here that an approximate approach of determining the stress dependence of the Peierls barrier (proposed
in Gröger R, Vitek V. Acta Mater 2008;56:5426) can be used, combined with test calculations employing the NEB + r method.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The most outstanding aspects of the plastic deformation
of single crystals of body-centered cubic (bcc) metals are
the rapid increase in the flow stress with decreasing temper-
ature and increasing strain rate, a strong dependence of the
flow stress on the orientation of the crystal relative to the
loading axes, and the related breakdown of the Schmid
law (for reviews, see Refs. [4–8]). It has been firmly estab-
lished in the last forty years that this plastic behavior
results from sessile 1/2h111i screw dislocations whose
cores spread into three {110} planes of the h111i zone.
These dislocations then possess a very high Peierls stress,
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and their motion does not obey the Schmid law (for
reviews, see e.g. Refs. [5,9]). At finite temperatures, their
movement is aided by thermal activation via nucleation
of pairs of kinks that subsequently migrate easily along
the dislocation line [10–13].

While many atomistic calculations of the core structure
of 1/2h111i screw dislocations in bcc metals, as well as the
stress needed to move them at 0 K (the Peierls stress), have
been made (for a recent review, see Ref. [9]), studies of their
thermally activated motion are much rarer. In principle,
atomistic modeling of the dislocation motion via formation
and propagation of kink pairs can be made by molecular
dynamics, and several such calculations were performed
[14–17]. Notwithstanding, owing to the limited timescale
of molecular dynamics studies at room or lower tempera-
tures, such calculations had to be carried out at stresses
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and strain rates several orders of magnitude higher than
those of interest in the usual deformation experiments.
However, such large strain rates may only be encountered
in shock loading, but then the deformation process is not
controlled by the formation of kink pairs. Instead, other
phenomena such as phonon and electron scattering become
dominant (see e.g. Refs. [18–21]).

An alternative though more approximate approach is to
develop a mesoscopic model based on the reaction rate the-
ory describing the thermally activated process of the for-
mation of pairs of kinks [10–13]. However, when
dislocation core effects are involved, such models depend
sensitively on the form of the Peierls barrier V(n) that the
dislocation has to overcome when moving in the crystal
along a generally curvilinear coordinate n. The reason is
that the activation enthalpy, which determines the rate of
the dislocation motion, is obtained by integrating over
the Peierls barrier, and this integration requires knowledge
of the overall shape of this barrier [22–25]. This informa-
tion is not obtained in the molecular statics calculations,
because these reveal only the core structure and the stress
at which the dislocation moves at 0 K, i.e., the Peierls stress
rP. The only information about the Peierls barrier that can
be acquired from these calculations is its maximum slope in
the direction of the dislocation motion since

rP b ¼ maxðdV =dnÞ; ð1Þ
where V is the energy per unit length of the dislocation, and
b is its Burgers vector. At the same time, the dependence of
the Peierls stress on the character of the applied load,
which is crucial information needed in the analysis of the
deformation behavior of bcc metals, is obtained in the
molecular statics calculations. This has to be reflected in
the corresponding dependence of the Peierls barrier on
the type of loading.

In molecular statics calculations that apply a pure shear
stress parallel to the Burgers vector of a 1/2h111i screw
dislocation, the Peierls stress was generally found to
depend on the orientation of the maximum resolved shear
stress plane (MRSSP) [2,5,26–28]. This dependence is the
origin of the so-called twinning–antitwinning asymmetry
found in virtually all bcc metals [4]. However, calculations
in which the stress tensor corresponds to tension/compres-
sion revealed a strong dependence of the Peierls stress on
the shear stress applied perpendicular to the Burgers vector
[2,26–28]. This stress does not contribute to the Peach–
Koehler force on the dislocation, but affects the magnitude
of the Peierls stress indirectly by modifying the structure of
the dislocation core. Both the effect of the orientation of
the MRSSP and the shear stress perpendicular to the Bur-
gers vector imply that the Peierls barrier is not a fixed func-
tion determined purely by the material, as often assumed,
but is an explicit function of the applied stress tensor. This
is one of the major results of molecular statics studies of the
structure and motion of 1/2h111i screw dislocations in bcc
metals published recently [2]. Moreover, this conclusion is
most likely general whenever the dislocation core is not
planar. For example, an analogous conclusion was reached
in the study of the Peierls barrier of the sessile Lommer–
Cottrell dislocation [17]. Consequently, knowledge of the
dependence of the Peierls barrier on the applied stress ten-
sor is essential for obtaining the appropriate stress depen-
dence of activation enthalpies and thus to develop a
mesoscopic model of thermally activated dislocation
motion that includes this dependence.

The calculation of the Peierls barrier can be made using
the nudged elastic band (NEB) method, originally developed
for studies of chemical reactions [29,30]. Within this method,
the minimum energy path of the dislocation between two
neighboring lattice sites of the same energy is found and
the variation in the dislocation energy along this path is iden-
tified with the Peierls barrier. Such calculations were made
recently using several empirical schemes to describe the
interaction between the atoms as well as methods based on
the density functional theory (DFT) [1,17,31–34].

The goal of the present study is to investigate the depen-
dence of the Peierls barrier on the applied shear stresses
parallel and perpendicular to the slip direction that were
found to control the Peierls stress [2,27]. For this purpose
the Peierls barrier and its stress dependence were deter-
mined using the NEB method with constrained atomic
relaxations (NEB + r), which the present authors formu-
lated recently [1]. While the present calculations have been
carried out mainly using the bond order potential for tung-
sten [35], the findings are likely to be more general and
apply broadly to all bcc metals.

In these calculations, it is considered that the dislocation
may move by elementary steps on three {110} planes of the
zone of the common h111i slip direction, as revealed by
molecular statics calculations of the dislocation motion at
0 K [2,27]. First, the variation in the Peierls barrier is stud-
ied when a pure shear stress parallel to the Burgers vector is
applied in planes inclined with respect to the {110} plane
on which the dislocation glide takes place. Next, the Peierls
barriers are evaluated for the dislocation motion on the
three {110} planes of the [111] zone under zero and
applied positive and negative shear stresses perpendicular
to the slip direction as well as for the combination of shear
stresses parallel and perpendicular to the slip direction. The
corresponding Peierls stresses determined from the maxi-
mum slopes of these barriers are then compared with those
found in molecular statics calculations at 0 K. This com-
parison illustrates the full consistency of the two
approaches. In addition, the case of uniaxial loading is also
investigated. Finally, the Peierls barriers obtained from the
NEB + r calculations are compared with those estimated
previously [3] using only knowledge of the Peierls stress,
and the limits of the latter approximate but computation-
ally much less demanding approach are assessed.

2. Theoretical and computational background

Within the NEB method [29,30,36,37], the path of a
given system is viewed as a chain of states between its



Fig. 1. Geometry of the simulated block showing the orientation of planes
and directions used in this paper. The spheres represent positions of atoms
in the three successive (111) planes and the initial position of the
dislocation corresponds to the lattice site marked “0”. Under positive
applied shear stress parallel to the slip direction (also in tension), the
dislocation can move on the three {110} planes in the directions 0! A,
0! B or 0! C. When this shear stress is negative (also in compression),
the dislocation moves in directions 0! A0, 0! B0 or 0! C0.
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two a priori known configurations. This chain of states is
then evolved towards the minimum energy path through
the configurational space. Traditionally, the NEB force
has been thought of as a vector of 3N components, where
N is the number of particles in the system. This NEB force
is then used to update all degrees of freedom (DOF) asso-
ciated with these particles, while calculating the energy of
the system using suitable interatomic potentials or first-
principles methods. It was shown recently [1] that, while
this approach provides the correct amplitude of the Peierls
barrier, its shape is not predicted with acceptable accuracy.
Specifically, the Peierls stress obtained from the maximum
slope of the Peierls barrier differs significantly from that
obtained by molecular statics simulations that include the
direct application of stress. In order to avoid this draw-
back, we utilize in the following a recent modification of
the NEB method [1] in which only a small number of
DOF that represent the position of the dislocation are
determined by the NEB force. All remaining DOF are
found by constrained molecular statics relaxations while
holding the DOF evaluated using the NEB force fixed.

In all the calculations below, the simulated cell is cylin-
drical. The dislocation line (and thus the z axis) parallel to
the [111] direction is placed in the middle of the block
along the axis of rotation of the cylinder. In the plane per-
pendicular to the dislocation glide, the x axis coincides with
the ½�12�1� direction, and the y axis with the ½�101� direction.
Hence, the xz plane is the ð�101Þ plane, which is taken as
the {110} plane most highly stressed by the shear stress
driving the dislocation motion. The orientations of the
three {110} planes in the zone of the [111] slip direction
are shown in Fig. 1. In all NEB + r calculations, the elastic
band (i.e., the path of the dislocation) is discretized by 15
movable images. The NEB force has only five components
and updates only the z coordinates of the five atoms that
are closest to the path of the dislocation between two
neighboring lattice sites. It was shown in Ref. [1] that the
Peierls barriers obtained by the NEB + r method are lar-
gely insensitive to the choice of DOF around the disloca-
tion that are updated by the NEB force. The five DOF
considered here define the lowest dimensional space for this
type of calculation. For example, if the slip plane is the
ð�101Þ plane, i.e., the dislocation moves from site 0 to site
A, the atoms associated with the five DOF are marked
1–5 in Fig. 1. The atomic block used in the calculation of
the Peierls barrier has to be large enough to make sure that
the energies of the initial and final images obtained under
the same applied stress are virtually the same. This condi-
tion is satisfied if the outer radius of the block is at least
R = 15a, where a is the lattice parameter (for tungsten,
3.165 Å). In this case, the energy difference between the ini-
tial and final configurations at zero applied stress is only
0.002 eV, which is negligible compared with the magnitude
of the energy barrier (�0.15 eV). Moreover, the maximum
force on any atom allowed in the relaxed initial and final
images has to be low enough to guarantee that there are
no images of lower energy that could be found by the
NEB + r calculation at zero applied stress. Here, the
molecular statics relaxations are terminated if
maxijjFijj < 0:005 eV=Å, where i passes through all atoms
in the block.

When inserting the dislocation or imposing the external
stress, all atoms in the block are initially displaced accord-
ing to the corresponding anisotropic linear elastic strain
field [38,39]. The atoms at distances R < 15a from the cen-
ter of the block are then relaxed, while the atoms outside
this region are held fixed. The final configurations of the
atomic block that correspond to dislocation positions after
its motion along any of the three {110} planes of the [111]
zone between two neighboring lattice sites are obtained in
the same way. The NEB + r method is then applied to cal-
culate the Peierls barriers for the motion of the dislocation
along the three possible {110} planes. Each of these energy
barriers is defined by a discrete set of energies EI, where
I = {0, M + 1} are the two known fixed images, and
I = 1. . .M the unknown images in the chain of states of
the system (elastic band) that are determined by the NEB
calculation. The corresponding energies per unit length of
the dislocation are obtained readily as VI = EI / b, where
b is the length of the dislocation segment included in the
simulated cell which, in this case, is also the length of the
Burgers vector of the dislocation. The Peierls barrier V(n)
is then obtained by interpolating the discrete set of values
VI � V0 for I = 0. . .M + 1 along the dislocation coordinate
n. In principle, n corresponds to the distance the disloca-
tion moved along a curvilinear path in the (111) plane per-
pendicular to its line. While it is still an open question
whether this dislocation path can be determined uniquely
from the knowledge of the positions of atoms, the coordi-
nate n is defined as a straight line connecting the two neigh-
boring lattice sites between which the dislocation transits.
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This choice is supported by recent calculations in Ref. [33],
where an approximate method employing a curved path of
the dislocation was introduced. While in calculations using
central force potentials of EAM type the path may be sig-
nificantly curved, the DFT-based calculations, which
include implicitly directional bonding just as the bond
order potentials do, suggest that this path is not far from
being straight.

3. Stress dependence of the Peierls barrier

3.1. Dependence on the shear stress parallel to the slip

direction

First, only the shear stress parallel to the slip direction is
considered, which is applied in a MRSSP that contains the
[111] slip direction. In the right-handed coordinate system,
where the y axis is perpendicular to the MRSSP, the z axis
parallel to the dislocation line, and the x axis lies in the
MRSSP perpendicular to the dislocation line and its Bur-
gers vector, this stress tensor is

Rr
MRSSP ¼

0 0 0

0 0 r

0 r 0

2
64

3
75: ð2Þ

It is known from molecular statics simulations [2] that
the glide plane is ð�101Þ for any orientation of the MRSSP.
If one rotates the coordinate system around the z axis such
that the new y axis is perpendicular to the glide plane ð�10 1Þ
and the x axis is in this glide plane, the stress tensor in this
coordinate system is

Rr
ð�101Þ ¼

0 0 r13

0 0 r23

r13 r23 0

2
64

3
75: ð3Þ

Here, r23 is the shear component of the stress tensor that
acts in the ð�1 01Þ glide plane parallel to the slip direction
and, by definition, it is the Schmid stress driving the dislo-
cation. The shear component r13 is parallel to the slip
direction, but acts in the plane perpendicular to the
ð�101Þ plane and does not drive the dislocation. Hence,
the latter stress component is called a non-glide stress.

Owing to the additive property of stress tensors, one can
express Eq. (3) as a sum Rr

ð�101Þ ¼ Rr
nonglide þ Rr

glide, where
Rr

nonglide imposes the non-glide stress (r13) and Rr
glide the Sch-

mid stress (r23). The objective is to investigate how the Pei-
erls barrier for the motion of the dislocation in the ð�101Þ
plane changes with the orientation of the MRSSP. This ori-
entation can be described by the angle v between the ð�10 1Þ
plane and the MRSSP (see Fig. 1), which has been com-
monly used in the literature [2,4,5]. For symmetry reasons,
the angle v can be limited to the range h�30�; 30�i. By vary-
ing the orientation of the MRSSP from negative to positive
values of v, the present authors investigated the well-
known twinning–antitwinning asymmetry [4], which should
be reflected not only in the Peierls stress, but also in the
Peierls barrier. This asymmetry, if observed, results from
the non-glide shear stress r13. While most of the calcula-
tions in this paper were made using the BOP for W, the
study involving the variation in the orientation of the
MRSSP when applying the shear stress parallel to the slip
direction was also made for Mo. The reason is that the
molecular statics calculations suggest only negligible twin-
ning–antitwinning asymmetry in W when the potential
developed in Ref. [35] is used, but a significant one in
Mo when the potential developed in Ref. [40] is used.

The following calculations consider the planes ð�31 2Þ,
ð�2�13Þ and ð�101Þ as the MRSSP. The two former planes
make angles v ¼ �19:1� with the ð�101Þ plane, which are
close to the middle of the angular range of �30�; r13 > 0
for the ð�3 12Þ plane, r13 < 0 for the ð�2�13Þ plane and
r13 = 0 for the ð�101Þ plane. The applied non-glide stress
tensor in the coordinate system x ¼ ½�12�1�, y ¼ ½�101� and
z = [111] is

Rr
nonglide ¼

0 0 r13

0 0 0

r13 0 0

2
64

3
75: ð4Þ

Starting with the two relaxed atomic blocks in which the
dislocation is in two neighboring minimum energy lattice
sites in the ð�1 01Þ plane, the non-glide stress tensor (4) is
then applied by increasing r13 in steps up to the value that
it would attain when the stress tensor (2) was applied in
molecular statics calculations to the level just before the dis-
location started to move, i.e., when r/C44 = CRSS/
C44 � 0.001, where CRSS is the critical resolved shear stress
in a given MRSSP. The NEB + r method is then employed
to calculate the Peierls barriers in the ð�101Þ plane when the
stress tensor (4) is applied in accordance with the MRSSP
considered. These barriers are plotted in the upper panels
of Fig. 2a and b for W and Mo, respectively. In all cases
studied here and also those calculated in the following sec-
tions, the Peierls barriers always possess just one maximum.
The same was found in recent studies employing a DFT-
based method [31,32], while calculations using central force
potentials of EAM type often lead to Peierls barriers with
intermediate minima [31,41]. The latter are presumably
not physically appropriate for transition metals with mixed
directional and nearly free electron bonding.

In the case of W (Fig. 2a), it is observed that when the
MRSSP is ð�2�13Þ or ð�3 12Þ the ð�101Þ Peierls barrier is lower
than for the MRSSP ð�1 01Þ. Moreover, the barrier is higher
for the MRSSP ð�312Þ than for the MRSSP ð�2�13Þ, which
indicates a twinning–antitwinning asymmetry. The lower
panel of Fig. 2a shows the derivatives of the three Peierls
barriers. Fig. 2a shows that rP is very similar for all three
MRSSP, and thus there is almost no twinning–antitwin-
ning asymmetry of rP. This agrees with the molecular stat-
ics calculations for W [2], where the Peierls stress for the
ð�101Þ plane is equal to CRSS � cosv; this value is practi-
cally the same for different MRSSP, as drawn in Fig. 2a
by the dashed line. The largest deviation of the Peierls
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Fig. 2. Variations in the Peierls barriers and their derivatives with the non-glide shear stress r13 (upper panels) for (a) tungsten and (b) molybdenum. The
lower panels show the derivatives of these barriers along the dislocation position, defined by the variable n. Their maxima determine the corresponding
Peierls stresses. Three MRSSP considered are the ð�101Þ plane (r13 = 0), ð�312Þ for which r13 > 0, and ð�2�13Þ for which r13 < 0. The values of the projection
of the CRSS acting in the MRSSP into the ð�101Þ plane found in molecular statics calculations (Peierls stresses) are drawn in the lower panels as straight
dashed lines.
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stress determined from the barriers relative to that calcu-
lated by molecular statics is �15%, which could be further
reduced if the exact dislocation pathways were known.

The three Peierls barriers for Mo and their derivatives
are shown in the upper and lower panels of Fig. 2b, respec-
tively. Similarly as in the case of W, these indicate a twin-
ning–antitwinning asymmetry that is also clearly visible
from the bottom panel of Fig. 2b. Here, rP in the ð�101Þ
plane is the lowest for the MRSSP ð�2�13Þ (twinning sense
of shear), intermediate for the MRSSP ð�101Þ and highest
for the MRSSP ð�312Þ (antitwinning sense of shear). The
values of rP determined from the Peierls barriers agree very
well with the Peierls stresses obtained by molecular statics
calculations. The latter are depicted in Fig. 2b as dashed
lines that are now different for different MRSSP. Small dif-
ferences between the Peierls stresses calculated from barri-
ers and in molecular statics occur, most likely as a result of
the actual curved dislocation path.

Importantly, this calculation demonstrates that the
twining–antitwinning asymmetry of the Peierls stress
results from the non-glide shear stress r13 that is parallel
to the slip direction, but acts in the plane perpendicular
to the ð�101Þ glide plane. Since the NEB + r method repro-
duces correctly both the twinning–antitwinning asymmetry
in Mo and negligible asymmetry in W, it confirms that this
method is a reliable tool for investigating the variation of
the Peierls barrier with the non-glide shear stress r13.
3.2. Effect of shear stress perpendicular to the slip direction

From previous atomistic studies [2,27], it follows that
the Peierls stress depends not only on the orientation of
the MRSSP, but also on the shear stress perpendicular to
the slip direction. For this reason, the changes in the Peierls
barrier induced by such shear stress are investigated. This
stress is applied by displacing all atoms in the block accord-
ing to the elastic strain tensor induced by the stress tensor

Rs
MRSSP ¼

�s 0 0

0 s 0

0 0 0

2
64

3
75; ð5Þ

which is applied in the same coordinate system as the stress
tensor Rr

MRSSP (Eq. (2)). While there are an infinite number
of ways to apply the shear stress perpendicular to the slip
direction, the stress given by Eq. (5) was found in earlier
studies [2,27] to be the most suitable. It corresponds to a
biaxial tension–compression in the plane perpendicular to
the dislocation line. Therefore, the plane of the maximum
shear stress perpendicular to the slip direction is found
by rotating the coordinate system of the tensor (5) by
�45� in the [11 1] zone.

The initial and final configurations for the NEB + r calcu-
lations were obtained by applying s/C44 = {0, ±0.02,
±0.04} to the block with the dislocation. Since there are
three {110} planes in the [111] zone, there are 15 possible
final configurations for the five initial configurations. The
starting and final configurations were obtained by first
inserting the dislocation into the closest equivalent lattice
sites on ð�101Þ, ð0�1 1Þ and ð�110Þ planes and relaxed by
molecular statics at s = 0. The magnitude of s was then grad-
ually increased to the desired level, while relaxing the atomic
positions using molecular statics at each step.

When the starting and final positions of the dislocation
had been defined, the NEB + r procedure was employed to
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calculate the 15 energy barriers between the five unique ini-
tial atomic configurations and the 15 final configurations
that correspond to the motion of the dislocation along
the three different {11 0} planes. The 15 calculated barriers
are shown in the upper row of Fig. 3. If s increases from
zero to positive values, the Peierls barrier for the disloca-
tion motion along ð�10 1Þ decreases, while the barriers for
the motion on the other two {110} planes increase. How-
ever, when s decreases from zero to negative values, the
Peierls barrier for the dislocation motion on the ð�101Þ
plane increases, while those for the motion on the other
two {110} planes decrease. This variation in the Peierls
barrier is reflected in the Peierls stress for the three
{11 0} planes. This is seen from the bottom part of
Fig. 3, where the derivatives of the Peierls barriers are plot-
ted vs. the coordinate n. The dislocation moves on the
ð�101Þ plane when max(dV/dn) (black curve) agrees with
CRSS � b (black dashed line). However, the dislocation
glides either on the ð0�11Þ or on the ð�11 0Þ plane when
max(dV/dn) (blue or purple curve, respectively) agrees with
CRSS � b/2 (blue dashed line). For s > 0, max(dV/dn), and
thus rPb is always the lowest for the ð�1 01Þ plane. Hence,
the dislocation is most likely to move on this plane. The
magnitude of max(dV/dn) agrees well with CRSS � b deter-
mined by molecular statics. For s < 0, max(dV/dn) is the
lowest for the ð�110Þ plane, which suggests that the disloca-
tion will move on this plane. Indeed, the value of max(dV/
dn) agrees well with CRSS � b/2 obtained from molecular
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statics calculations (blue dashed line), but the slip plane
found in molecular statics [2] is ð0�11Þ. However, it will
be shown in the next section that the Peierls stresses for
the ð�110Þ and ð0�11Þ planes are practically the same when
shear stresses both parallel and perpendicular to the slip
direction are applied.

At this point, the present authors note that the agree-
ment between the Peierls stress determined from the Peierls
barrier and that found in molecular statics calculations is
very close for both positive and negative s, while for
s = 0 the Peierls barrier slightly underestimates the Peierls
stress. This suggests that the path of the dislocation in
the actual slip plane becomes closer to the assumed straight
line as s deviates from zero. The reason is, presumably, the
effect of s on the core that extends into the ð�101Þ plane for
s > 0 and into the ð0�11Þ and ð�110Þ planes for s < 0. The
deviation of the path away from the straight line appears
to be the most significant when s � 0.

3.3. Combination of the shear stresses perpendicular and

parallel to the slip direction

In the following, a combination of the shear stresses per-
pendicular (s) and parallel (r) to the slip direction is con-
sidered, where the latter acts in the MRSSP ð�101Þ and its
magnitude is slightly below the CRSS identified for the
given value of s by molecular statics simulations [2]. Of
course, one cannot apply the Peierls stress because the dis-
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location would move, and the initial and final states of the
system for the NEB + r calculation could not be identified.
Only two shear stresses perpendicular to the slip direction
are considered, s/C44 = ±0.04. For s/C44 = �0.04,
molecular statics calculations give CRSS/C44 = 0.022 (the
slip takes place on the ð0�11Þ plane), whereas for
s/C44 = + 0.04, it is CRSS/C44 = 0.01 (the slip takes place
on the ð�101Þ plane).

The initial and final atomic blocks for the NEB + r cal-
culations were obtained by taking the blocks that were
relaxed at s/C44 = ±0.04 and r = 0 and superimposing
the shear stress parallel to the slip direction in steps of
0.001C44. The starting configurations of the intermediate
images I = 1. . .M in the NEB + r procedure were obtained
by linear interpolations of the atomic positions from the
initial and final states at the given applied stress. In this
case, the NEB + r calculations do not provide the Peierls
barrier but, instead, the enthalpy of the system per unit
length of the dislocation line,

HðnÞ ¼ V ðnÞ � rbn cos w; ð6Þ
where V(0) = 0 and w = 0 for the ð�10 1Þ plane, and
w ¼ �60� for the ð�110Þ and ð0�11Þ planes, respectively.
Here, rbn cos w is the work done by the Schmid stress
r cos w when moving the dislocation a distance n along
the dislocation path in the ð�101Þ, ð0�11Þ or ð�110Þ planes.
It is emphasized that Eq. (6) is not an activation enthalpy
that would appear in a mechanism of the thermally acti-
vated process of the dislocation motion, since here the
movement of a straight infinite dislocation is considered.
Instead, it is a measure of the remaining energy that has
to be supplied purely mechanically (i.e., by increasing the
applied stress r) to move the dislocation on the slip plane
characterized by the angle w. The dislocation moves when

max
dHðnÞ

dn
6 0 ð7Þ

and it follows from Eq. (6) that

max
dHðnÞ

dn
¼ max

dV ðnÞ
dn

� CRSS � b cos w ð8Þ

which uses the fact that CRSS = max r.
The enthalpies H(n) and their derivatives dH/dn are

plotted for the three {110} slip planes in Fig. 4. For
s/C44 = �0.04, max(dH/dn) is very similar for both ð0�11Þ
and ð�1 10Þ planes, and it is significantly smaller than for
the ð�101Þ plane. In both cases, max(dH/dn) is close to zero
and, while inequality (7) is not exactly satisfied; it is likely
to be satisfied if the dislocation path deviated from the
straight line. Hence, the dislocation can move either on
the ð0�11Þ or on the ð0�11Þ plane, but the preferred slip
plane cannot be predicted unambiguously. There is no rea-
son to expect that the distances the dislocation traverses
between neighboring minimum energy positions on these
two planes, and thus also the corresponding derivatives
dH/dn for these two planes, would be identical. Hence,
the corresponding enthalpies H(n) may also be different,
which would give preference for the slip of the dislocation
on one of these {110} planes. Repeating this analysis for
s/C44 = +0.04 and r � CRSS yields the plots shown in
the right panels of Fig. 4. Here, the enthalpy for the
ð�1 01Þ slip follows inequality (7), while those for ð0�11Þ
and ð�1 10Þ slips do not. Consequently, there is a clear pref-
erence for the slip of the dislocation on the ð�101Þ plane as
found in the molecular statics calculations [2].

3.4. Uniaxial loading

In the case of uniaxial loading, the applied stress tensor
contains not only the shear stresses perpendicular and par-
allel to the slip direction, but also other stress components
such as the hydrostatic stress and the normal stresses per-
pendicular to the slip direction. However, these stresses
cannot influence the Peierls stress unless they are extremely
large, in which case they change the nature of bonding.
Hence, any uniaxial loading (both tension and compres-
sion) can be represented from the point of view of disloca-
tion motion as a combination of the shear stresses
perpendicular (s) and parallel (r) to the slip direction act-
ing in the MRSSP that are built up simultaneously, such
that their ratio (g = s/r) is fixed. For tensile loading
(s > 0), atomistic simulations [2] predict that the disloca-
tion moves on the ð�101Þ plane for any orientation of the
loading axis. However, in compression (s < 0), the disloca-
tion may move in a {110} plane in which the shear stress
parallel to the Burgers vector is lower than in the {110}
plane with the highest Schmid factor.

As an example of uniaxial loading, the NEB + r calcula-
tion of the Peierls barrier for compression in the ½�238�
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direction was carried out, i.e., when the MRSSP is ð�1 01Þ.
As in the previous calculations, the magnitude of the axial
stress was chosen such that |r| was slightly below the CRSS
obtained by molecular statics calculations for this uniaxial
load. In this case, the shear stress parallel to the slip direc-
tion is negative, and thus the dislocation moves in the
direction opposite to that for the combination of the two
shear stresses discussed above. Therefore, the final posi-
tions of the dislocation on the three {110} planes corre-
spond to the points marked A0, B0, C0 in Fig. 1.

The calculated enthalpies for the motion of the disloca-
tion along the three {110} planes are shown in the upper
panel and their derivatives in the lower panel of Fig. 5.
One can see that max(dH/dn) � 0 for both ð�101Þ and
ð�110Þ planes. Hence, the dislocation is equally likely to
glide on these two {110} planes. This agrees with the
results of the application of stress in molecular statics cal-
culations, where the dislocation was found to move on the
ð�110Þ plane for the ½�238� compression, but a small devia-
tion in the loading axis towards the [012] direction causes
a change of the slip plane to the ð�101Þ plane [42].

4. Comparison of the Peierls barriers determined by NEB

calculations with those constructed based on Peierls stresses

calculated by molecular statics

The previous sections presented calculations of the Pei-
erls barriers using the modified NEB + r method for sev-
eral special orientations of loading, and demonstrated
that the Peierls stresses deduced from these barriers agree
closely with those evaluated in molecular statics calcula-
tions. As stated already in the Introduction, the reason
for determining the Peierls barrier and its stress dependence
is that this is a precursor for the development of a meso-
scopic theory of thermally activated dislocation motion
for any loading of a single crystal. However, for this pur-
pose, the Peierls barriers would have to be evaluated for
a broad variety of externally applied loads, and this is com-
putationally very demanding when employing the NEB
method. In a previous study [3], the present authors pro-
posed an approximate but computationally much less
demanding approach for estimating the Peierls barrier
and its dependence on external loading directly from the
corresponding dependence of the Peierls stress found in
molecular statics calculations. This section compares this
approach with the NEB + r calculations and assesses in
this way its applicability and limitations.

In Ref. [3], the present authors first introduced the
Peierls potential in a generic two-dimensional form as a
mapping function that reflects the threefold symmetry of
the [11 1] axis and the positions of potential minima and
maxima. This mapping function was not obtained by any
calculations, and its sole purpose was to serve as a template
that reflects the symmetry of the lattice. The loading by
shear stresses parallel and/or perpendicular to the Burgers
vector deforms the Peierls potential so that it becomes
asymmetric. Starting with the generic symmetric form of
the Peierls potential, its asymmetry arising from applied
shear stresses was determined such as to reproduce the
variations of the Peierls stress with the orientation of the
MRSSP and with the shear stress perpendicular to the slip
direction, as obtained in molecular statics calculations. The
details of the parameterization of the Peierls potential and
calculation of the related Peierls barriers for a given load-
ing are found in Ref. [3].

As an example, Fig. 6 shows a comparison between the
Peierls barriers calculated by the NEB + r method and
those obtained in Ref. [3] for the case of loading by a shear
stress s perpendicular to the Burgers vector. In the former
case, the dislocation is assumed to move along a straight
line connecting the two neighboring lattice sites in the slip
plane, while in the latter case the path may not coincide
with the straight line. Both calculations predict that, for
s P 0, the glide of the dislocation takes place on the
ð�101Þ plane, while for s < 0 the slip plane is ð�110Þ. The
maximum slopes of the Peierls barriers for the slip planes
are quite similar and very close to the product CRSS � b
when the glide plane is ð�101Þ and to CRSS � b/2 when the
glide plane is ð�110Þ. However, the overall shapes of the bar-
riers calculated in the two different ways are significantly
different, in particular close to their maxima. This is under-
standable, since only the maximum slope of the Peierls bar-
rier calculated by the approach used in Ref. [3] is fitted to
the Peierls stress obtained by molecular statics, but no
information about the barrier height and shape enters this
procedure. Nevertheless, the method developed in Ref. [3],
which is computationally much less demanding, can be
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used, but the height and shape of the barrier near the max-
imum need to be modified. This can be done by compari-
son with a few representative calculations of the Peierls
barrier employing the approach discussed in this paper
or, when developing the model of the thermally activated
motion of dislocations, by additional fitting of the flow
stress at a chosen temperature and loading to experimental
values. The latter was used in Ref. [3].

5. Conclusions

The main result of this paper is the dependence of the
Peierls barrier of 1/2h111i screw dislocations in bcc metals
on the applied stress tensor. This investigation was carried
out by employing the recently formulated NEB method
with constrained atomic relaxations (NEB + r) [1] and
describing the interaction between the atoms using a bond
order potential for tungsten [35]. However, the general
results are not sensitively dependent on the potential used
and can be considered as common for all transition bcc
metals. Since no reliable procedure exists that would deter-
mine the possible curved shape of the dislocation path, the
usual assumption was adopted that the dislocation moves
along a straight line connecting the neighboring minimum
energy dislocation positions. This choice is supported by
the recent calculations employing a DFT-based method
[31,33]. As suggested by molecular statics calculations [2],
the motion of an isolated 1/2[1 11] screw dislocation always
occurs along one of the three {110} planes of the [11 1]
zone. Following the dependence of the Peierls stress on
the form of the applied stress found in these calculations,
the present authors deem that the Peierls barrier depends
on the following non-glide shear stresses: (i) shear stress
parallel to the slip direction, but acting in the plane perpen-
dicular to the slip plane, and (ii) shear stress perpendicular
to the slip direction. The former is responsible for the twin-
ning–antitwinning asymmetry of the CRSS, which has been
much studied in the literature.

When imposing the shear stress parallel to the slip direc-
tion in the plane perpendicular to the slip plane, the effect
on the Peierls barrier was very small in the case of W. This
means that the twinning–antitwinning asymmetry in W is
negligible when the potential from Ref. [35] is used. This
agrees with the results of previous molecular statics calcu-
lations [2]. However, a test calculation for molybdenum, in
which a significant twinning–antitwinning asymmetry was
found [2], revealed a significant influence of the shear stress
parallel to the slip direction acting in the plane perpendic-
ular to the slip plane.

However, a very significant dependence of the Peierls
barrier on the shear stress perpendicular to the slip direc-
tion (s) was always found, as similarly observed in molec-
ular statics calculations [2]. In particular, for s > 0, the
Peierls barrier is the lowest for the motion of the disloca-
tion along the ð�1 01Þ plane that coincides with the MRSSP.
However, the Peierls barrier for the ð�11 0Þ slip is the lowest
at negative s, even though the MRSSP is still the ð�101Þ
plane. The former is fully consistent with the molecular
statics calculations [2], where the dislocation always moves
on the MRSSP ð�101Þ under positive s. However, for neg-
ative s, the molecular statics calculations [2] predict the slip
on the ð0�1 1Þ plane that seemingly contradicts the prefer-
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ence for the ð�110Þ slip obtained from NEB + r calcula-
tions. Nevertheless, it has been shown here that if shear
stresses both perpendicular and parallel to the slip direction
are applied, as they are in the molecular statics calcula-
tions, the maximum derivative of the enthalpy of the sys-
tem vanishes virtually simultaneously for both moves
along ð0�11Þ and ð�110Þ planes. Hence, any of these planes
can become the slip plane at negative s. This finding agrees
not only with the atomistic simulations on bcc tungsten,
but also with bcc molybdenum, where at intermediate neg-
ative s the dislocation first glides on the ð0�11Þ plane and
for large negative s it cross-slips into the ð�1 10Þ plane [2].

It was also demonstrated here that the NEB + r method
predicts the correct Peierls barrier for uniaxial loading. In
particular, it was shown that the slip plane under compres-
sion in the ½�238� direction can be either ð�101Þ or ð�1 10Þ.
This agrees with direct atomistic calculations [42] that pre-
dict the slip on ð�11 0Þ, while a small deviation in the load-
ing direction towards the [012] axis (corresponding to the
same MRSSP) changes the slip plane to ð�101Þ.

The Peierls barriers obtained in this paper using the
NEB + r method were compared with those from a much
simplified formulation of the Peierls potential that was
developed in Ref. [3]. The maximum slopes of both these
barriers are essentially the same, but the barriers are quite
different close to their maxima. This difference is largely a
consequence of a generic shape of the Peierls potential
assumed in Ref. [3], which was subsequently parameterized
to reproduce the curvature of the stress dependence of the
activation enthalpy at intermediate stresses. Since the shape
of the Peierls barrier was not known, an infinite number of
different barriers could be defined, all of which agree with
molecular statics simulations. The NEB + r calculations
in this paper remove this ambiguity by providing the shape
of the Peierls barrier and its changes under stress without
any a priori assumptions about their shapes. This opens
the possibility of formulating a novel description of the
thermodynamics of dislocation glide that incorporates a
correct shape of the Peierls barrier and its changes under
stress, as obtained from the NEB + r calculations.
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